United States Department of Agriculture

Forest Service

Forest Products Laboratory

General Technical Report FPL-GTR-76

Specific Gravity, Moisture Content, and Density Relationship for Wood

William T. Simpson

Abstract

This report reviews the basis for determining values for the density of wood as it depends on moisture content and specific gravity. The data are presented in several ways to meet the needs of a variety of users.

Keywords: Specific gravity, density, wood weight

Contents

	Pa	age
Introduction		1
System for Determining Wood Density		1
Density Tables		2
Basic Specific Gravity		2
Other Specific Gravity Values		3
Concluding Remarks		4
References		4
Appendix. Relationship of Specific Gravity Values		13

July 1993

Simpson, William T. 1993. Specific gravity, moisture content, and density relationship for wood. Gen. Tech. Rep. FPL-GTR-76. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 13 p.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398. Laboratory publications are sent to more than 1,000 libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

United States Department of Agriculture

Forest Service

Forest Products Laboratory

General Technical Report FPL-GTR-76

Specific Gravity, Moisture Content, and Density Relationship for Wood

William T. Simpson

Errata

Page 1, column 2, Equation (2)

$$D = (W_{\rm d}/V_{\rm g}) (1 + M/100)$$
 (2)

The term W_d/V_g is related to basic specific gravity G_b by

Pages 9-12, Tables 5-8. Note on tables should read

Exceeds maximum possible moisture content

Page 13, Appendix, Equation (la)

$$G_{b} = (W_{d}/V_{g})p_{w} \tag{1a}$$

where W_d is oven-dry weight of wood, V_{gg} is volume of green wood, and p_w is density of water.

Page 13, Appendix, Equation (4a)

$$S = (V_g - V_M)/V_g$$
 or
$$V_M = V_g (1 - S) \tag{4a}$$

Specific Gravity, Moisture Content, and Density Relationship for Wood

William T. Simpson, Research Forest Products Technologist Forest Products Laboratory, Madison, Wisconsin

Introduction

Knowledge about the density of wood is useful for estimating shipping weights. The density of wood depends on specific gravity and moisture content. A common way to present density data is in tabular and graphical form, where density in pounds per cubic foot or kilograms per cubic meter is shown for a series of specific gravity and moisture content values. This kind of system is shown in the *Wood Handbook* (FPL 1987). However, the system has several shortcomings.

One shortcoming is that density values in the *Wood Handbook* are shown for moisture contents above the maximum possible for those specific gravity values (Tables 1 and 2). Another shortcoming is that this system requires two steps: first, a graphical conversion of specific gravity from one volume base to another, and then a reading from a table. Furthermore, no equations are offered for direct calculation of density as a function of moisture content and specific gravity, which precludes easy use of the system in computer programs or spreadsheet calculations. Finally, the system is subject to misinterpretation and thus can yield erroneous density values if the user is not aware of the various definitions of specific gravity as it applies to wood.

This report discusses these shortcomings and develops equations, graphs, and tables for determining density as a function of moisture content and several common definitions of specific gravity.

System for Determining Wood Density

The common definition of wood moisture content on a dry basis can be written as

$$W_{\rm g} = W_{\rm d}(1 + M/100) \tag{1}$$

where $W_{\rm g}$ is the green weight of wood (pounds or kilograms) at moisture content M (percent), and $W_{\rm d}$ is the oven-dry weight of wood.

Dividing both sides of Equation (1) by the volume of wood at moisture content $M(V_g)$, the density D is

$$D = (W_{\rm d}/a_{\rm g})(1 + M/100) \tag{2}$$

The term $W_d V_g$ is related to basic specific gravity G_b by

$$W_{\rm d}/V_{\rm g} = p_{\rm w}G_{\rm b} \tag{3}$$

where $p_{\rm w}$ is the density of water (62.4 lb/ft³ or 1,000 kg/m³) based on volume when above 30 percent moisture content. Substituting Equation (3) into Equation (2) results in the following equation for calculating density:

$$D = p_{\rm w}G_{\rm b}(1 + M/100) \tag{4}$$

A possible misapplication of Equation (4) is to use it at <30 percent moisture content with no correction in specific gravity for volumetric shrinkage. It is also possible to overlook or misunderstand the definition of specific gravity in the *Wood Handbook*, which could cause a user to read incorrect density values from the tables. Specific gravity is defined on the basis of volume at the tabulated moisture content- not on the more common basis of green volume, as is used to define basic specific gravity. Misunderstandings can cause errors 115 percent, as will be illustrated in another section of this report.

The **Wood Handbook** describes a graphical way to convert basic specific gravity to specific gravity based

Figure 1—Relation of specific gravity to moisture content. Follow line for specific gravity (volume when green) to desired moisture content, then read specific gravity (volume at current moisture content) from vertical axis.

Source: Wood Handbook, Figures 3 and 4 (FPL 1987).

on volume at any of the tabulated moisture contents (Fig. 1). Density values can then be read from the tables after the conversion. Although this system of determining density values is valid, it requires two steps and the use of both a graph and a table. The same density information can be presented in one table or one graph.

The maximum moisture content of wood is reached when the cell walls and cell lumens are completely filled with water. When specific gravity is high, lumen volume is low and maximum moisture content is

Figure 2—Theoretical maximum possible moisture content of wood (M_{m-a-x}) as a function of basic specific gravity (G_b).

therefore restricted. This relationship can be estimated by

$$M_{\text{max}} = (100/G_{\text{b}})(1 - G_{\text{b}}/G_{\text{w}})$$
 (5)

where $M_{\rm m\; a\; x}$ is maximum moisture content and $G_{\rm w}$ is the specific gravity of wood substance, equal to approximately 1.54 (Skaar 1988). Equation (5) is shown in Figure 2.

Therefore, some density values at high specific gravity and moisture content values in Table 1 are not possible because the tabulated moisture content exceeds the maximum possible moisture content. These conditions will be discussed later in this report.

Density Tables

Basic Specific Gravity

Equation (4) can be used to change the basis of tabulated density values below 30 percent moisture content from specific gravity based on volume at tabulated moisture content to basic specific gravity if volume is corrected for shrinkage. Assuming a linear relationship between shrinkage and moisture content from 30 to 0 percent (Stamm 1964), the volumetric shrinkage *S* at any moisture content is

$$S = aS_{t} \tag{6}$$

where a is (30 - M)/30 and S_t is total volumetric shrinkage from 30 to 0 percent moisture content.

Introducing Equation (6) into Equation (4) to account for shrinkage

$$D = p_{\rm w}G_{\rm b}\frac{(1+M/100)}{1-S} \tag{7}$$

Volumetric shrinkage data are necessary for using Equation (7). Each species has its own $S_{\rm t}$ value, and ideally there would be a density table for each species. However, this would be somewhat cumbersome and may not be necessary, given the inherent variability of wood and the known relationship between volumetric shrinkage and basic specific gravity. Stamm (1964) summarized the background on this relationship. The result is that volumetric shrinkage of both hardwoods and softwoods can be reasonably approximated by

$$S_{\rm t} = 0.265G_{\rm b} \tag{8}$$

Therefore, even if a density table is not constructed for each species, Equation (8) accounts for the major source of variation in shrinkage between species.

Combining Equations (6) to (8) results in

$$D = \frac{G_{\rm b}(1 + M/100)}{1 - 0.265aG_{\rm b}} \tag{9}$$

The results of Equation (9) are listed in Table 3 and shown in Figure 3. Table 3 also shows maximum moisture content and density values. (The data in Table 3 are expressed in SI units in Table 4.)

The following example illustrates how using the incorrect specific gravity results in an incorrect density value. Suppose the user wants to know the density of wood when specific gravity is 0.56 and moisture content is 8 percent. If the volume basis for this given specific gravity is not clear, or if the user is not aware of the importance of the volume basis, the user might go directly to the tabular data (Table 1) and read a density of 37.7 lb/ft³ (605 kg/m³). If the given specific gravity of 0.56 is the basic specific gravity, the correct density is 42.3 lb/ft³ (679 kg/m³) (Table 3) and the incorrect value is in error by 11 percent. Although this may seem an unlikely error for specialists in wood technology, it does not seem unlikely for someone who does not realize the necessity of knowing the exact definition of specific gravity for specific tables or handbooks. These definitions, if present, are often cited in footnotes that can be overlooked or ignored.

Figure 3—Density of wood as a function of moisture content and basic specific gravity (G_b); (a) English units, (b) SI units.

Other Specific Gravity Values

Some references list specific gravity values on a basis other than green volume; in those cases, Table 3 is of no use in determining density values. Oven-dry volume (Hildebrand 1970) and volume at 12 percent moisture content (Chichignoud and others 1990) are common alternative bases. Equation (9) can be generalized for specific gravity based on volume at any moisture content if we develop the relationship between basic specific gravity and specific gravity based on the other volumes (Appendix). The result of this relationship is

$$G_{\rm b} = \frac{G_M}{1 + 0.265 a G_M} \tag{10}$$

where G_M is specific gravity based on volume at moisture content M. Equation (10) is substituted into Equation (9) for moisture contents <30 percent and into Equations (3) and (4) for moisture contents \geq 30 percent.

Table 5 is a density table for specific gravity based on volume at 12 percent moisture content $(G_M = G_{1\,2})$

(see Table 6 for SI units). Table 7 shows specific gravity values based on oven-dry volume ($G_M = G_O$) (see Table 8 for SI values).

Concluding Remarks

The validity and efficiency of a method for determining the density of wood at various combinations of specific gravity and moisture content depend on an understanding of the definition of specific gravity. Because specific gravity depends on wood volume, shrinkage must be accounted for when determining specific gravity below the fiber saturation point. The equations and tables described in this report can be used to determine density at any moisture content and specific gravity.

References

Chichiguoud, M.; Deon, G.; Detienne, P.; Parant, B.; and Vantomme, P. 1990. Tropical timber atlas of Latin America. Yokohama, Japan: International Tropical Timber Organization, and Nogent-Sur-Marne Cedex, France: Centre Technique Forestier Tropical.

Forest Products Laboratory. 1987. Wood handbook: Wood as an engineering material. Agric. Handb. 72. (Rev.) Washington, DC: U.S. Department of Agriculture. 466 p.

Hildebrand, R. 1970. Kiln drying of sawn timber. Germany: Maschinenbau GmbH. 198 p.

Skaar, C. 1988. Wood-water relations. New York: Springer-Verlag. 283 p.

Stamm, A.J. 1964. Wood and cellulose science. New York: The Ronald Press. 549 p.

Table 1-Wood Handbook data for determining wood density^a

	0.70	43.7	45.4	47.2	48.9	50.7	52.4	54.2	55.9	57.7	59.4	61.2	62.9	64.6	66.4	68.1	6.69	71.6	73.4	75.1	76.9	78.6	80.4	82.1	83.9	85.6	87.4	91.7	96.1	100.5	104.8	109.2
	0.68	42.4	4	45.8	47.5	49.2	50.9	52.6	54.3	26.0	57.7	59.4	61.1	62.8	64.5	66.2	67.9	9.69	71.3	73.0	74.7	76.4	78.1	79.8	81.5	83.2	84.9	89.1	93.4	97.6	101.8	106.1
	0.66	41.2	42.8	44.5	46.1	47.8	49.4	51.1	52.7	54.4	56.0	57.7	59.3	61.0	62.6	64.2	62.9	67.5	69.2	70.8	72.5	74.1	75.8	77.4	79.1	80.7	82.4	86.5	90.6	94.7	98.8	103.0
	0.64	39.9	41.5	43.1	4 .7	46.3	47.9	49.5	51.1	52.7	54.3	55.9	57.5	59.1	60.7	62.3	63.9	65.5	67.1	68.7	70.3	7.9	73.5	75.1	76.7	78.3	79.9	83.9	87.9	9.0	95.8	8.6
	0.62	38.7	40.2	41.8	43.3	44.9	46.4	48.0	49.5	51.1	52.6	54.2	55.7	57.3	58.8	60.4	61.9	63.4	65.0	66.5	68.1	69.6	71.2	72.7	74.3	75.8	77.4	81.2	85.1	89.0	92.9	96.7
	0.60	37.4	38.9	40.4	41.9	43.4	6.4	46.4	47.9	49.4	50.9	52.4	53.9	55.4	56.9	58.4	59.9	61.4	62.9	64.4	62.9	67.4	68.9	70.4	71.9	73.4	74.9	78.6	82.4	86.1	89.9	93.6
	0.58	36.2	37.6	39.1	40.5	42.0	43.4	44.9	46.3	47.8	49.2	50.7	52.1	53.6	55.0	56.5	57.9	59.4	8.09	62.3	63.7	65.1	9.99	68.0	69.5	70.9	72.4	76.0	79.6	83.2	86.9	90.5
wityc	0.56	34.9	36.3	37.7	39.1	40.5	41.9	43.3	44.7	46.1	47.5	48.9	50.3	51.7	53.1	54.5	55.9	57.3	58.7	60.1	61.5	62.9	64.3	65.7	67.1	68.5	69.9	73.4	76.9	80.4	83.9	87.4
ecific gra	0.54	33.7	35.0	36.4	37.7	39.1	4. 4.	4 8. 1.8	£3.	4 5:	45.8	47.2	48.5	6.64	51.2	52.6	53.9	55.3	56.6	58.0	59.3	60.7	62.0	63.3	64.7	98.0	67.4	70.8	74.1	77.5	80.9	84.2
als of spo	0.52	32.4	33.7	35.0	36.3	37.6	38.9	40.2	41.5	42.8	1 .	45.4	46.7	48.0	49.3	50.6	51.9	53.2	54.5	55.8	57.1	58.4	59.7	61.0	62.3	63.6	64.9	68.1	4.	74.6	6.77	81.1
Density (lb/ft ³) at various levels of specific gravity ^c	0.50	31.2	32.4	33.7	34.9	36.2	37.4	38.7	39.9	41.2	45.4	43.7	4 4.9	46.2	47.4	48.7	49.9	51.2	52.4	53.7	54.9	56.2	57.4	58.7	59.9	61.2	62.4	65.5	68.6	71.8	74.9	78.0
3) at vai	0.48	30.0	31.2	32.3	33.5	34.7	35.9	37.1	38.3	39.5	40.7	41.9	43.1	44.3	45.5	46.7	47.9	49.1	50.3	51.5	52.7	53.9	55.1	56.3	57.5	58.7	59.9	62.9	62.9	68.9	7.9	74.9
sity (lb/ft	0.46	28.7	29.9	31.0	32.1	33.3	94.4	35.6	36.7	37.9	39.0	40.2	41.3	42.5	43.6	44.8	45.9	47.1	48.2	49.4	50.5	51.7	52.8	54.0	55.1	56.3	57.4	60.3	63.1	99.0	68.9	71.8
Den	0.44	27.5	28.6	29.7	30.8	31.8 8.	32.9	34.0	35.1	36.2	37.3	38.4	39.5	40.6	41.7	42.8	43.9	45.0	46.1	47.2	48.3	49.4	50.5	51.6	52.7	53.8	54.9	57.7	4.09	63.1	62.9	68.6
	0.42	26.2	27.3	28.3	29.4	30.4	31.4	32.5	33.5	34.6	35.6	36.7	37.7	38.8	39.8	6.0	41.9	43.0	4.0	1 5.1	46.1	47.2	48.2	49.3	50.3	51.4	52.4	55.0	57.7	60.3	62.9	65.5
	0.40	25.0	26.0	27.0	28.0	29.0	30.0	31.0	31.9	32.9	33.9	94.0	35.9	36.9	37.9	38.9	39.9	40.9 6.0	41.9	42.9	43.9	44.9	45.9	46.9	47.9	48.9	49.9	52.4	54.9	57.4	59.9	62.4
	0.38	23.7	24.7	25.6	26.6	27.5	28.5	29.4	30.4	31.3	32.2	33.2	34.1	35.1	36.0	37.0	37.9	38.9	39.8	40.8 8.0	41.7	42.7	43.6	44.6	45.5	46.5	47.4	8.64	52.2	54.5	56.9	59.3
	0.36	22.5	23.4	24.3	25.2	26.1	27.0	27.9	28.8	29.7	30.6	31.4	32.3	33.2	8	35.0	35.9	36.8	37.7	38.6	39.5	40.4	41.3	42.5	£3. ⊥.	4 0.	4.9	47.2	49.4	51.7	53.9	56.2
	0.34	21.2	22.1	22.9	23.8	24.6	25.5	26.3	27.2	28.0	28.9	29.7	30.6	31.4	32.2	33.1	33.9	34.8	35.6	36.5	37.3	38.2	39.0	39.9	40.7	41.6	45.4	44.6	46.7	48.8	50.9	53.0
	0.32	20.0	20.8	21.6	22.4	23.5	24.0	24.8	25.6	26.4	27.2	28.0	28.8	29.6	30.4	31.2	31.9	32.7	33.5	34.3	35.1	35.9	36.7	37.5	38.3	39.1	39.0	4 1.9	43.9	45.9	47.9	49.9
	0.30	18.7	19.5	20.5	2.0	21.7	22.5	23.2	24.0	24.7	25.5	26.2	27.0	27.7	28.5	29.5	30.0	30.7	31.4	32.2	32.9	33.7	34.4	35.2	35.9	36.7	37.4	39.3	1 4	1 3.1	4 4.9	46.8
φM	(%)	0	4	œ	12	16	50	24	5 8	32	36	4	4	48	52	26	90	64	68	72	92	80	84	88	92	96	2	19	120	130	5	150

avalues based on mass when ovendry and volume at tabulated moisture content. From the Wood Handbook (FPL 1987); Tables 3 to 7. b is moisture content. $^{6}D = 62.4G_{\rm b}(1+M/100)$ for all levels of moisture content.

9 Table 2—Wood Handbook data in Si units of measurement

¥				 				Den	iity (kg/n	1 ³) at val	Density (kg/m³) at various levels of specific gravity ^a	als of spe	xcific gra	vitya							
(%)	0.30	0.32	0.34	98.0	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	99.0	0.68	0.70
C	900	320	340	260	000	400	420	440	707	9	3	3	1	202	300	8		9	١		
•		9 6) ;		2 0	2	1	1		9	200	250	04C	200	280	200	020	540	200	680	9
4	2 2	555	400	3/4	SEC	416	43/	458	478	499	520	541	562	582	603	624	645	999	686	707	728
œ	324	346	367	380	410	432	454	475	497	518	540	562	583	605	626	648	670	691	713	734	756
72	336	358	381	403	426	44	470	493	515	538	260	582	605	627	650	672	694	717	739	762	784
16	348	371	394	418	<u>4</u>	464	487	510	534	557	580	603	626	650	673	969	719	742	766	789	. . .
50	360	384	408	432	456	480	504	528	552	576	009	624	648	672	969	720	744	768	79.	81.8	4
24	372	397	422	446	471	496	521	546	570	595	620	645	670	694	719	744	769	794	ς Σ Σ Σ	843	8 8
28	384	410	435	461	486	512	538	563	583	614	640	999	691	717	742	768	794	2.0	845	25	88
35	396	422	449	475	502	528	554	581	607	634	99	989	713	739	786	792	818	845	871	80.8	428
36	408	435	482	490	517	544	571	598	626	653	680	707	734	762	789	816	843	870	868	925	952
4	420	448	476	504	532	260	588	616	644	672	200	728	756	784	812	840	868	896	924	952	86
4	432	461	490	518	547	576	605	634	662	691	720	749	778	808	835	864	893	922	950	979	1008
48	4	474	503	533	562	592	622	651	681	710	4	240	799	829	828	888	918	947	977	1006	1036
25	456	486	517	547	578	809	638	699	669	730	760	790	821	851	882	912	942	973	1003	1034	1064
56	468	499	530	562	593	824	655	989	718	749	780	811	842	874	905	936	296	866	1030	1061	1092
9	480	512	54 4	576	808	640	672	704	736	768	800	832	864	896	928	096	992	1024	1056	1088	1120
4	492	525	558	280	623	929	689	722	754	787	820	853	886	918	951	984	1017	1050	1082	1115	1148
89	504	538	571	605	638	672	706	739	773	806	8 40	874	206	941	974	1008	1042	1075	1109	1142	1176
72	516	250	585	619	854	688	722	757	791	826	860	894	929	963	966	1032	1066	1101	1135	1170	1204
9/	528	563	298	634	699	5	739	774	910	845	8B0	915	920	986	1021	1056	1091	1126	1162	1197	1232
80	540	576	612	648	684	720	756	792	828	864	006	936	972	1008	104 440	1080	1116	1152	1188	1224	1260
8	552	589	626	662	669	736	773	810	846	883	920	957	994	1030	1067	1104	1141	1178	1214	1251	1288
88	564	802	639	877	74	752	790	827	865	905	9	978	1015	1053	1090	1128	1166	1203	1241	1278	1316
92	576	614	653	691	730	768	808	845	883	922	960	866	1037	1075	1114	1152	1190	1229	1267	1306	1344
96	288	627	999	206	745	784	823	862	902	941	980	1019	1058	1098	1137	1176	1215	1254	1294	1333	1372
5	009	640	680	720	760	800	840	880	920	960	<u>8</u>	1040 040	1080	1120	1160	1200	1240	1280	1320	1360	1400
10	630	672	714	756	798	8 40	832	924	986	1008	1050	1092	1134	1176	1218	1260	1302	1344	1386	1428	1470
120	9	704	748	792	836	880	924	968	1012	1056	1100	1144	1188	1232	1276	1320	1364	1408	1452	1496	1540
130	9	738	782	828	874	920	996	1012	1058	1104	1150	1196	1242	1288	1334	1380	1426	1472	1518	1564	1610
4	720	768	8 10	864	912	0 96	8	1056	1 0	1152	1200	1248	1296	1344	1392	- 54 04 04	1488	1536	1584	1632	1680
22	750	80	820	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750
a _D =	1000Gb	(1 + M/1	00) for :	all levels	of mois	$^{\mathrm{a}}D$ = 1000G $_{\mathrm{b}}$ (1 + M/100) for all levels of moisture content.	tent.														

Table 3—Results of Equation (9) for determining wood density

	8,0	83.2.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	7.77 7.77
	0.68	28.28.28.28.28.28.28.28.28.28.28.28.28.2	788 1.3
	0.66	\$0.00000000000000000000000000000000000	78.8 8.8
	0.64	### ### ##############################	9.05 4.0
	0.62	### ### ##############################	8 to
	0.60	39.3 41.0 42.8 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44	25.55 25.55
sity (lb/ft. 3) at various levels of specific gravity (ovendry weight/green volume) $^{ m a}$	0.58	444444444444444444444444444444444444	707 1.67
ght/green	0.56	14444444444444444444444444444444444444	74.6
andry wei	0.54	88444444444444444444444444444444444444	24 22 22 22
avity (ove	0.52	₽88886444444444488₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	127 8.85
pecific gr	0.50	888888844444444888888888888 0750007557470747074707470747074	73.73 33.33
evels of s	0.48	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	±52
various k	0.46	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	25.5
(Ib/R ³) at	4.0	EESSESSESSESSESSESSESSESSESSESSESSESSES	克 克
Density	0.42	88898888888888888888888888888888888888	는 전 9.
	0.40	78888888888888444444448893689368 aananaaaaaaaaaaaa444444444	25. 25.
	0.38	8272888888888888888884444444444888888888	85.7.
	0.36	48882888888888444444888888888888888888	22 233 233
	0.34	88446444444444444444444444444444444444	20 88 80 88
	0.32	2000242008282828282882882444442282828 #406-170740644061852-2016-2016999999	248 89.4
	0.30	88228282828288288888888888888888888888	86.08
¥	(%)	04872888844878888878888885758545855888	Max M Max O

#For M < 30 percent, D = 62.4Gb(1 + M/100)/(1 - 0.265aGb), where a = (30 - M/30; for M > 30 percent, D = 62.4Gb(1 + M/100).

∞ Table 4—Results of Equation (9) in SI units

	0.70	888 882 883 883 883 883 883 883 883 883	78 1245
	0.68	829 828 824 864 865 873 888 888 888 888 888 873 873 1114 1034 1115 1170 1170 1170 1170 1170 1170 1170	82 1238
	0.66	888 888 888 888 888 888 888 888 888 88	87 1231
	25.	<u> </u>	1224 1224
	0.62	7422 770 770 770 770 770 770 770 770 770 7	96 1217
	0.60	713 724 724 724 725 726 726 726 726 726 726 726 726 726 726	102 1210
olume)	0.58	685 696 776 776 775 775 775 775 775 775 775 77	107
ht/areen	0.58	658 668 679 679 724 724 724 739 739 739 739 739 739 739 739 739 739	114
(kg/m ⁻³) at various levels of specific gravity (ovendry weight)green volume) ^a	0.54	630 658 685 713 742 652 652 679 706 734 765 652 689 7716 734 770 689 777 734 770 734 760 734 760 734 770 698 725 752 773 760 734 760 734 760 734 760 734 760 734 760 734 760 734 760 734 760 778 806 835 884 893 778 874 874 874 874 874 874 874 874 874	120 1189
IVITY (0VB)	0.52	603 6035 6035 6035 6035 6035 6035 6035 6	127 1182
ecific are	0.50	576 608 608 608 608 608 608 608 608 608 60	135 1175
veis of sp	0.48	550 572 572 572 572 573 573 573 573 573 573 573 573 573 573	143 1168
arious le	0.46	25.55.55.55.55.55.55.55.55.55.55.55.55.5	152
/m3) at v	0.44	520 520 520 520 520 530 531 532 533 533 533 533 533 533 533 533 533	162 154
Density (kg	0.42	24444444444444444444444444444444444444	173
۵	0.40	458 458 458 458 458 458 557 558 558 558 558 558 558 558 558 5	82 54 54
	0.38	2423 2524 2525 2525 2525 2525 2525 2525	198 1133
	98.0	388 4428 4445 454 454 454 454 454 454 454 454 4	213 1126
	0.34 4	374 4438 4438 4438 4438 4438 4438 4438 4	1119
	0.32	350 350 350 350 350 350 350 350 350 350	248 1112
	0.30	326 326 327 327 327 327 327 327 327 327 327 327	268 1105
Ħ	(%)	04@15844888448888888888888888888888888888	Max M Max D

Afor M < 30 percent, D = 1000 Gb (1 + M/100)/(1 - 0.265 aGb), where a = (30 - M/30); for M > 30 percent, D = 1000 Gb (1 + M/100).

Table 5—Wood density based on volume at 12 percent moisture content

	0.70		76.2
	0.68	74474444477777777777777777777777777777	98 75.8
	99.0	44444444444444444444444444444444444444	10 K
	9.0	24.44.44.44.64.64.64.64.64.64.64.64.64.64	107 107
	0.62	4.174.84.44.44.86.08.08.08.08.08.08.08.08.08.08.08.08.08.	112
	0.60	0.0444444444448888888888888888888888888	118 74.4
	0.58	88884444444444444444444444444444444444	123 74.0
vitya	0.56	85.7 37.1 38.6 40.0 41.4 42.8 37.1 38.5 40.7 42.1 42.5 39.9 41.3 42.7 44.1 42.5 39.9 41.3 42.7 44.1 42.5 39.5 40.3 42.7 44.1 42.5 43.9 45.3 44.7 42.1 42.5 43.9 45.3 44.7 42.1 42.5 43.9 45.3 42.7 44.1 42.5 43.9 45.3 42.7 44.1 42.5 43.9 45.3 42.7 42.1 42.5 43.9 45.3 42.7 42.1 42.5 43.9 45.3 42.7 42.1 42.5 43.9 45.3 42.6 42.7 42.1 42.5 43.9 45.3 42.7 42.1 42.5 42.9 42.3 42.7 42.1 42.5 42.9 42.3 42.7 42.1 42.5 42.9 42.3 42.7 42.1 42.5 42.9 42.3 42.7 42.1 42.5 42.9 42.3 42.7 42.1 42.5 42.9 42.3 42.1 42.5 42.9 42.3 42.1 42.5 42.9 42.3 42.1 42.5 42.9 42.3 42.1 42.5 42.9 42.3 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1	129 73.6
cific gra	0.54	88888444444444446888888888 74417488888444444448888888888 118888884478478488888888 11888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 118888 11888 11888 11888 11888 118888 118888 118888 118888 118888 118888 118888 118888	136 73.3
s of spe	0.52	\$ 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4	143 72.9
us level	0.50	28844888884444444448888888888888888888	151 72.5
Density (15/113) at various levels of specific gravity a	0.48	E 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	159 72.1
/ (E)/R3)	0.46	88E88888888888444444888888888888888888	24. 8. 8.
Densit	0.44	88888888888888844444444488888888888888	178 7.17
	0.42	788888828888888844484484888888888888888	189 71.0
	0.40	882888888888888888884444444444888888888	70.6 70.6
	0.38	22,22,22,22,22,22,22,22,22,22,22,22,22,	214 702 202
	0.36	23424242628282828282828282828284444444444	8.89 8.89
	0.34	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	245 69.4
	0.32	82222222222222222222222222222222222222	263 69.1
	0.30	e= 6212122222242427222222222222222222222222	284 68.7
¥	(%)	048712888844888888828851588488888	Max M Max D

^aFor M < 30 percent, $D = 62.4G_{\rm b}(1 + M/100)/(1 - 0.265 aG_{\rm b})$, where a = (30 - M)/30 and $G_{\rm b} = G_{12}(1 - 0.265 aG_{12}/(1 + 0.265 aG_{12}))$; for M > 30 percent, $D = 62.4G_{\rm b}(1 + M/100)$.

Table 6-SI values for data in Table 5

	0.70	857 858 858 858 858 858 858 858 858 858	¥22
	0.68	25255555555555555555555555555555555555	98 1215
	99.0	710 720 720 720 720 720 723 723 723 723 723 723 723 723 723 723	102 1209
	29.0	687 777 777 777 777 777 777 777 777 777	107 1203
	0.62	664 674 674 694 694 704 704 705 708 835 835 835 835 835 835 1038 11038 1108 1108 1108 1108 1108 110	112 1198
	0.60	50 573 595 618 641 664 654 654 654 656 655 615 627 650 672 694 685 615 617 640 662 685 685 615 617 640 662 685 685 615 627 650 672 694 685 615 637 659 691 713 655 615 627 650 672 694 685 615 637 659 679 701 723 745 750 743 767 790 750 750 750 743 767 790 750 750 750 750 750 750 750 750 750 75	118 1192
	0.58	618 629 650 650 659 659 659 659 678 772 772 772 772 772 772 772 773 871 871 871 1020 1020 1162 1162 1168 1168 1168	123 186
avity a	0.56	606 607 607 607 607 607 720 720 720 720 609 609 609 609 609 609 609 609 609 60	128 180
Density (kg/m ³) at various levels of specific gravity ^a	0.54	\$273 \$284 \$284 \$284 \$286 \$286 \$273 \$273 \$273 \$273 \$273 \$273 \$273 \$273	136 1174
ds of sp	0.52	550 572 572 572 572 653 653 653 653 653 653 653 653 653 653	143 168
ous leve	0.50	528 530 550 550 550 550 550 550 648 664 664 667 772 772 772 773 773 774 775 775 775 775 775 775 775 775 775	151 1162
at vari	0.48	506 5217 5217 5217 5217 5218 5218 5218 5217 5217 5217 5217 5217 5217 5217 5217	159 1156
/ (kg/m	0.46	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	168 1150
Density	0.44	444 482 482 482 482 482 482 482 482 482	₽ ₽ 4
	0.42	484 489 489 489 489 489 489 489 489 489	189 1138
	0.40	428 428 428 438 448 486 486 486 486 486 487 487 487 488 488 488 488 488 488 488	132 132
	0.38	98 888 888 888 888 888 888 888 888 888	214 1125
	98.0	374 384 394 421 421 423 423 423 640 640 652 653 653 654 667 667 667 667 667 667 667 667 667 66	229 1119
	0.34	353 372 372 372 372 373 373 373 373 373 37	245 1113
	0.32	331 331 331 331 331 331 331 331 331 331	263 1107
	0:30	327 327 327 327 327 327 327 327 327 327	1 28 1 28 1 28 1
×	(%)	04@0768488884448888488888888888888888888888	Max M Max D

aFor M < 30 percent, $D = 1000G_b(1 + M/100)/(1 - 0.265 a G_b)$, where a = (30 - M/30) and $G_b = G_{12}(1 + 0.265 a G_{12})$; for M > 30 percent, $D = 1000G_b(1 + M/100)$.

Table 7--Wood density based on ovendry volume

	-	0.70																				•			•	•	•	1157										± 52 72
		0.68	680	8	5	70	22	728	73.7	745	Ì	5 6	\$ 5	38	3	853	876	6 8	82	8	896	96	1014	1037	1 000		138	2	7011								÷	1202 1202
	8	0.66	999	67.	88	<u>6</u>	8	709	7.8	728	242	7 9	1 9 9	000	3	3	854 4	876	8	921	\$	996	686 6	<u>1</u>	<u>8</u>	1056 6	1079	5	36	3								113
	290	0.0 0.0	940	8	9 6	671	8	069	669	707	722	12	190	9	86,0	018	832	8	876	897	919	<u>¥</u>	88	985	1997	1029 1039	3	2023	140	?						_		118 1192
	6	0.02	620	<u>8</u>	2	652	661	671	679	688	703	25	776	200	9	80	608	83 -	825	873	8 8	916	937	8 20	8	8	22	<u> </u>	3 = =	1173	!							148 186
	8	8	00	61	22	83	3	65 1	099 9	699	683	38	. K	745	2 6	91	/8/	808	8	8 8 8	820	6	<u>5</u>	83	က္က	973	3 3	2 E	<u>8</u>	139	}				lo moiote.			128 1181
	ay o	8	280	-85 -	8	612	8	<u>8</u>	<u>8</u>	649	98	88	2	3	747	į	Ş	\$	8	824	8	865	88 52	8	S25	3 3 5	9 9 9 8	8 5	1056	106	156				dieeon m			2
anothe Anthon S. as along land and an another S. mind of the B.	C graving	3	280	2	285	285	805	612	621	සි	<u>\$</u>	993	8	200	35	77.	₹ }	ē;	88	3	819	8	828	878	600	56	200	9 0 1 1 1	1024	1073	1122	1170			maxim:			<u> </u>
	9.54 0.54	}	₹ 9	2	262	5/2	8	285	8	610	624	642	861	S	88	000	9 -	5	8	2	\$	813	8	င္တင္သ	900	1 0 2 0 3 0	38	8 2	992	1039	1087	# #			Fynese	3	!	147 1165
900	0.52		520	2	<u>4</u>	200	8	5		280	සි	622	8	858	878 878	9 9	200	25	25	2	8	98	8	853	4 6	18	\ 0 0	88	96	1 0 5	1051	1097	143				•	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1	0.50		200	5	725	250	¥;	2	9	220	28 3	8	618	838	553	35	- 0	9 0	38	47	4	3		8	200	200	o a	38	927	971	1015	900	25	148			,	162 1155
Se My	0.48		8	3	5	250	25	3	₹	8	26 26	573	296	613	9	32	3	ţ S S	- 0 0 0	0 1	25	35	₹!	è ?	\$ 8	2 2 2	ο α 5 κ	32	89	937	Ø.	2 2 2 3	9 2 2 3 3 3 3	2			į	54
Sales A	0.46		₫ į	\$	\$	7 5	3	- 6	2	223	¥	228	574	290	607	200	38	2 8	36	700	2 C	8	35	25	į	707	Š	820	96	3 05	8	8 4 4	28	96	2		į	24 4
٥	4.0		4 ;	\$ \$	ĮĘ	- 6 + 6	ē 5	35	3	က် ကြ	220	536 536	552	267	583	9	2 4 7 4	2 6	38	1	9 0 7 0	200	4 6	35	35	ķ	32	788	828	867	98	3 8	ខ្លួន	2 5 5 4 5 4	103		9	1138
	24.0		8	? ?	1	36	2 6	1 9	4, 0,0	\$	80	514	2 20	2	559	574	8	8 8 8 8	38	200	3 4	2 4	0 G	96	3 5	72	74	756	8	8	090 090 0	35	2 S	35	1058	1096	Ş	1132
	0.40		\$	2 5	1	35	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	£ £	ģ	\$ [4//	4	20 20	521	535	550	28.5	27.0	200	200	2 & 2 & 5 &	72	34	- u	88	88	500	723	759	96	833	200	3 5	976	1013	049 1085		1127
	0.38		88	88	38	ξ. α	427	7 2	? ;	\$;	\$ i	470	<u>총</u>	8	5	525	230	22	8	88	88	5 g	3 6	2 K	38	8	677	8	22	8	\$ 8		28	88 83 83 83 83 83 83 83 83 83 83 83 83 8	296	<u> </u>	100	152 122
	0.36		389	200	8	36	88	¥ 5	5 5	3	‡ !	4	3	473	48	8	513	200	230	3	38	36	200	8 1 8 1 8	85	8	3	657	0 0 0	3	90	3 C	77	88	920	953 986 986	220	1115
	9.34 4.0		38	36	88	378	8	38	3 5	? \$	7 7	424	3	4	462	474	487	49	512	202	735 738	32	} §	27	286	299	61	624	655	81	750	2 6	3 =	8	873	908 938	256	108
	0.32		28	38	34.	355	363	32	9 6	36	8	\$;	5 5	425	₹ 2	4	69	472	484	408	26	<u> </u>	<u> </u>	3	555	200	578	290	919	3 6	0 0 7 0	35	767	8	826	88 88 88	27.4	1103
	0.30		38	317	326	34	35	201	36	3 6	200	200	9	\$	4	425 22	<u>\$</u>	4	456	467	478	8	200	51	525	534	8	226	8 4 4	- 6 - 6	8 8 7 4	38	32	750	138	8 8 4	20.0	760
×	` &	'	> 4	œ	12	5	202	26	38	36	7 6	8	₹:	4	4	25	29	9	2	89	22	78	2	2	88	92	96	8	28	35	86	5	<u>8</u>	120	8	<u>88</u>	Max M	Max D

^aFor M < 30 percent, D = 1000Gb(1 + M/100)/(1 - 0.265aGb), where a = (30 - M)/30 and Gb = G₀((1 + 0.265aG₀); for M > 30 percent, D = 1000G_b(1 + M/100).

Appendix. Relationship of Specific Gravity Values

In this appendix, we describe the general relationship between basic specific gravity and specific gravity values based on volume at other moisture content levels.

Basic specific gravity is defined as

$$G_{\rm b} = (W_{\rm d}/V_{\rm d})/p_{\rm w} \tag{1a}$$

where W_d is oven-dry weight of wood, V_d is volume of dry wood, and $p_{\mathbf{w}_w}$ is density of water.

Specific gravity based on volume at any other moisture content M is defined as

$$G_M = (W_d/V_M)/p_w \tag{2a}$$

Equating Equations (1a) and (2a) through W_d

$$G_{\mathbf{M}} = G_{\mathbf{b}} V_{\mathbf{g}} / V_{\mathbf{M}} \tag{3a}$$

where $V_{\rm g}$ is volume of green wood.

Volumetric shrinkage S from ≥ 30 percent to < 30 percent moisture content is

$$S = (V_{\rm g} - V_{\rm M})/V_{\rm M}$$

or

$$V_{\mathbf{M}} = V_{\mathbf{g}}(1 - S) \tag{4a}$$

Substituting Equation (4a) into Equation (3a)

$$G_{\mathbf{b}} = G_{\mathbf{M}}(1 - S) \tag{5a}$$

Assuming the linear shrinkage of Equation (6) in the text $(S = aS_t)$

$$G_{\rm b} = G_{M}(1 - aS_{\rm t}) \tag{6a}$$

where a is (30 - M)/30.

The next step is to express S_t in Equation (6a) in terms of G_M . Substituting Equation (6a) into Equation (8) $(S_t = 0.265 \ G_b)$ in the text

$$S_{t} = 0.265G_{M}(1 - aS_{t}) \tag{7a}$$

Solving for S_t

$$S_{\rm t} = \frac{0.265G_M}{1 + 0.265aG_M} \tag{8a}$$

and substituting Equation (8a) into Equation (6a)

$$G_{\rm b} = \frac{G_M}{1 + 0.265 a G_M} \tag{9a}$$

which can be substituted into Equation (9) in the text to calculate density based on the volume at any moisture content. Equation (9a) can also be used to calculate the graphical relationship between moisture content, basic specific gravity, and specific gravity based on volume at any moisture content, as shown in Figure 1 of the text.

The value of M in the term a ((30 - M)/30) in Equation (9a) is the moisture content for the volume base of the specific gravity. The value of M in the term \mathbf{a} in Equation (9) in the text is the moisture content at which the density is calculated (that is, 0 to 200 percent in Tables 5 and 7). If this latter value of M is taken as the moisture content of the specific gravity volume base, the resulting density values will be based on the specific gravity at the volume of the tabulated moisture content, that is, the same as that in the tables in the $Wood\ Handbook$. Note also in Equation (9a) that when M=30, a=0, and $G_M=G_b$, text Equation (9) reverts to text Equations (3) and (4).